WATER QUALITY VOLUNTEER COALITION

(Short Form)

WATER MONITORING SITE PHYSICAL & CHEMICAL DATA PAGE-1

Revised November 20	23
Revised November 20	25

SITE ID #	
SITE NAME	
DATE	TIME
RECORDER	MONITOR/#
MONITOR/#	MONITOR/#
MONITOR/#	MONITOR/#
MONITOR/#	MONITOR/#

PRECIPITATION			
choose one	choose one		
CURRENT	PAST 24 HR		
Storm	Storm		
Rain (continuous)	Rain (continuous)		
Shower (intermittent)	Showers (intermittent)		
Overcast	Overcast		
Clear	Clear		

WATER APPEARANCE			
choose at least	choose at least one by check mark		
Clear	Foamy		
Orange/red	Milky/white		
Dark brown	Muddy/cloudy		
Green	Multi-colored		
Other (describe below):			

STREAM TYPE			
choose at least one by check mark			
Straight Channelized			
Meandering/curved	Pool/Riffle		
A	Yes		
Any other dams present?	No		
Level of high water above the present stream level			
(<i>meters</i>) <i>m</i>			

Is this an estimate?

Yes No

STREAM BANK			
X-Section Shape Erosion			
V-Shape	No sign of erosion		
U-Shape	Occasional areas of erosion		
Rectangular	Extensive erosion		
Banks undercut	Rock/concrete stabl. present		

WATER ODORS		
choose at leas	t one by check mark	
Chlorine	Fishy	
Sulfur	Sewage	
Musty	Earthy	
Manure	Spicy	
Other (describe	e below):	
No unusual smo	ells	
Non-wadable st	tream	

SEDIMENT DEPOSITS						
choose a	choose at least one by check mark					
Sludge	Sludge Gravel Paper Fiber					
Silt	Silt Mud Sand					
Other (describe below):						
No unusua	al sediments					

STREAM BOTTOM			
At least one entry			
INORGANIC + ORGANIC MUST = 100%			
INORGANIC	%	ORGANIC	%
Bedrock (solid)		Muck-mud	
Boulder >25 cm		Pulpy peat	
Cobble 6.25 - 25 cm		Fibrous peat	
Gravel 0.25 - 6.25 cm		Detritus	
Sand up to 0.25 cm		Logs, limbs	
Silt soft fine sand		Marl (gray, shell frag)	
Clay sticky fine sand		Other:	
Other:		Non-wadable stream	
TOTAL = 100%			

Observations/Notes:

Internal Use Only:

Flow Factor: 0.8 or 0.9

WATER QUALITY VOLUNTEER COALITION

(Short Form)

WATER MONITORING SITE PHYSICAL & CHEMICAL DATA PAGE-2

PREDOMINANT SURROUNDING LAND USE

Es	stimate	d by percentage		
At least one entry required				
	0%			
Wetlands		Commercial		
Forest		Industrial		
Cropland		Unused/abandoned		
Pasture		Shrubs/small trees		
Residential	Other:			
No change in land use from previous sampling				
TOTAL = 100%			100%	

AVERAGE TEMPERATURE				
A :	$(_\°F + _\°F)/2 = _\°F$			
Air	$(\°C + \°C)/2 = \°C$			
	$(\°F + \°F)/2 = \°F$			
Water	$(\°C + \°C)/2 = \°C$			

AVERAGE STREAM DEPTH

Conversion:

ft * 0.3048 = _____ meters

meters

Average (m): Non-Wadable

AVERAGE STREAM WIDTH

Conversion:

ft * 0.3048 = _____

Average (m): Non-Wadable

AVERAGE STREAM VELOCITY

Velocity (m/s) = distance (m) / average time (s)

Velocity (m/s):

STREAM FLOW VOLUME

Flow Volume = width (m) * depth (m) * velocity (m/s)

Flow Meter ID (if applicable)

Flow Volume (m³/s)

Non-wadable stream

Internal Use: (Vol * Factor) -> Final Flow Vol =

For questions or concerns, contact <u>noellelafaver@lancasterconservation.org</u> or amandagoldsmith@lancasterconservation.org

CHEMICAL DATA

Readings deemed unusual for the site should be questioned Every 6 visits perform a duplicate for quality

Every 6 visits, perform a duplicate for quality					
assurance					
Parameter	*Water Quality Guidelines*	Original Reading	Duplicate Reading		
$pH^1 \; ({\tt pH} \; {\tt Units})$	6.0 - 9.0				
Dissolved Oxygen ¹ (mg/l)	≥ 6.0 mg/l				
Specific Conductivity ² (µS/cm)	50 – 1,500 μS/cm				
$Nitrates^1 (ppm = mg/l)$	≤ 10 mg/l as Nitrogen				
Phosphates (ppm)	-				
Salinity ³ (ppt)	$\leq 1 ppt$				
Total Alkalinity ¹	≥ 20 mg/l				
$TDS^1 \; (\text{mg/l})$	≤ 750 mg/l				
Turbidity (FAU=NTU)	-				
Calibration Data	Specific Conductivity	pH			
Calibration Std.		4.01	7.01		
Std. Solution Readback (Check)					

Water Quality Guidelines derived from PA Code 25, Chapter 93¹, US EPA², and USGS³. These values help indicate the health of a stream and should only be used as a reference. They do not indicate the range of the instrument

Reagent Lot Numbers/Exp Date: Conservation District

- Nitrate:
- Phosphate:
- Bromocresol Green:

Equipment

- pH Probe ID:
- Colorimeter #:

Observations/Notes:

Final Flow Vol =

Biosurvey: Field Data Sheets for the Lancaster County WOVC Program

ALL of the following data sheets MUST be filled out entirely for the web host. Make sure include all of the monitors' names and be sure to write clearly and use a pencil or water proof pen.

County of PaSEC	Site ID #	
Recorder Monitors'Information:		
Name:	ID#	
Name:	Ш#	
Name:	ID#	
Name:	ID#	
Name:	ID#	
Stream Information		
Vatershed Name		
Waterbody Name		
County	State	
bite Description	Otato	
Site ID#		

Precipitation

In the Past 24 hours:

- □ Storms (heavy rains >2.5 cm)
- \square Rain (steady rain 0.85 cm to 2.5 cm)
- □ Showers (intermittent rain up to 0.85 cm)
- Overcast
- Clear

Current:

- □ Storms (heavy rains >2.5 cm)
- □ Rain (steady rain 0.85 cm to 2.5 cm)
- □ Showers (intermittent rain up to 0.85 cm)

١

- \Box Overcast
- 🗆 Clear

Sketch of Site

On your sketch, note features that affect stream habitat, such as: riffles, runs, pools, ditches, wetlands, dams, riprap, outfalls, tributaries, landscape features, logging paths, vegetation, and roads

Muddy-bottom

Macroinvertebrate Count

Identify the macroinvertebrates (to order) in your sample using the identification card. We are only concerned with organisms that appear on the identification card. Record the number of organisms below.

Group I – Sensitive			
Water Penny Dobsonfly Hellgrammite Gilled Snail	Riffle Beetle Adult Non net spinning caddisfly	Mayfly Stonefly	
Group II – Somewhat Sensitive		······································	
Beetle Larvae	Scuds	Sowbug Clam	
Damselfly	Dragonfly	Crayfish	
Fishfly	Cranefly	Craynsn	
Alderfly	Net spinning caddisfly		
Group III – Tolerant			
A	Midge	Snail	
Aquatic Worm	Leech		
Blackfly			
Water Anality Rating	bod >40 Fair 20 – 40 Poor <20		
Group I – Sensitive	(# of R's) x 5.0 =		
	(# of C's) x 5.6 =		
	(# of D's) x 5.3 :		
	Sum of the Index Value for Group I	=	
Group II – Somewhat Sensitive	(# of R's) x 3.2 =		
	(# of C's) x 3.4 :		
	(# of D's) x 3.0		
	Sum of the Index Value for Group II	=	
Group I – Tolerant	(# of R's) x 1.2		
Group r round	(# of C's) x 1.1		
	(# of D's) x 1.0		
	Sum of the Index Value for Group III	= <u></u>	

To calculate the water quality score for the stream site, add together the index values for each group. The sum of thes values equals the water quality score

WATER QUALITY SCORE = _____

(fish)boulder, cobble, submerged logs, undercut banks, or other stable habitat.cobble, or other stable habitat; adequate habitat; adequate habitat; mature habitat; habitat, habitat habitat; habitat, habitat habitat.cobble, or other stable habitat; habitat habitat; habitat habitat; habitat habitat.72. Epifaunal Substrate' (riffe quality)Well-developed riffe and run; riffle is as wide as stream and length extends two times the width of stream; abundance of cobble.St 14131211109876573. Embeddedness' (evaluate in upstream & central portions of riffles)Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment.Gravel, cobble, and boulder particles are 20- 25% surrounded by fine sediment.Gravel, cobble, and boulder particles are 20- 50% surrounded by fine sediment.Collder particles are 50- 50% surrounded by fine sediment.Only 3 of the 4 habitat por esent if fast-hallow is regimes present (if fast- regimes), sore lower than if missing other regimes), sore lower than if missing other regimes.0987655.Channel All four velocity/depth downstream alleration when affecting reach)No channelization or dredging present.Some channelization present, usually in areas of bid ge abutments; evidence of past channelization is not present.Only 3 of the 4 habitat and 40 to 80% of stream 80% downstream alleration is not present.0987655.Channel All four velocity/depth deep, slow shallow, fast- of bid		
Investigators: Completed By: Parameter Optimal Suboptimal Marginal 1. Instream Cover' Greater than 50% mix of boulder, cobble, or other stable boulder, cobble, or other stable habitat; adequate availability less than the stable habitat. 10-30% mix of boulder, cobble, or other stable habitat; adequate availability less than the stable habitat. 10-30% mix of boulder, cobble, or other stable habitat; adequate availability less than the stable habitat. 20 19 18 17 16 15 14 13 11 10 9 8 7 6 5 20 19 18 17 16 15 14 13 11 10 9 8 7 6 5 20 19 18 17 16 15 14 13 11 10 9 8 7 6 5 20 19 18 17 16 15 14 13 11 10 9 8 7 6 5 20 19 18 17 16		
Parameter Optimal Suboptimal Marginal '1. Instream Cover' Greater than 50% mix of boulder, cobble, submerged logs, undercut banks, or other stable habitat. 10-30% mix of boulder, cobble, or other stable habitat; habitat availability less than desirable. 10-30% mix of boulder, cobble, or other stable habitat. 10-30% mix of boulder, cobble, or other stable habitat; habitat availability less than desirable. 10-30% mix of boulder, cobble, or other stable habitat. 10-30% mix of boulder, cobble, or other stable habitat; habitat availability less than desirable. 10-30% mix of boulder, cobble, or other stable habitat; habitat availability less than desirable. 20 19 18 17 16 15 14 13 12 11 0 9 8 7 6 5 ?2. Epifaunal (riffle quality) Well-developed riffle and width of stream; abundance of cobble, Riff tas wide as tream width; gravel or large boulders and boulders and boulder particles are 50- boulder particl		
11. Instream Cover' Greater than 50% mix of boulder, cobble, or other stable cobble, or other stable cobble, or other stable habitat; habitat state habitat. 10-30% mix of boulder, cobble, cobble, or other stable cobble, or other stable habitat; habitat state habitat. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 20 19 18 17 16 15 14 13 11 10 9 8 7 6 5 21. Spifaunal Well-developed riffe and run; riffle is as wide as stream and lts length boulders and lts length boulders and stream width; gravel or large boulders and lts length boulders and gravel common. 10 9 8 7 6 5 20 19 18 17 15 14 13 12 11 10 9 8 7 6 5 20 19 18 17 16 15 14 13 12		
(fish) boulder, cobble, or other stable submerged logs, undercut banks, or other stable habitat. cobble, or other stable habitat; adequate habitat; adequate habitat; adequate habitat; adequate habitat; adequate habitat. cobble, or other stable habitat; habitat availability less than desirable. boulder, cobble, habitat; adequate habitat; adequate habitat; habitat habi	Poor	
2. Epifaunal Well-developed riffle and run; riffle is as wide as Run area may be as kting; riffle not as wide not stream and its length but in the working; riffle not as wide not more width; as stream and its length but is less than 2 times the width of stream; abundance of cobble; boulders and gravel common. Run area may be as stream and its length but is less than 2 times the break is less than 2 times the break is less than 2 times the boulders and gravel common. Run area may be as stream and its length bou is less than 2 times the break is less than 2 times the break is less than 2 times the boulders and be derock prevalent; some cobble present. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 *3. Embeddedness' (evaluate in upstream & comtant portions of riffles) Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 50-76% surrounded by fine sediment. Sofk surrounde sediment. Sofk surrounded by fine sediment. Sofk surrounded by fine sedime	ess than 10% mix o boulder, cobble, or c stable habitat; lack c nabitat is obvious.	other
Substrate! (riffle quality)run; riffle is as wide as stream and length extends two times the width of stream; abundance of cobble;stream but length is less than two times width; abundance of cobble; boulders and gravel common.acking; riffle not as wide as as stream and its length bou is less than 2 times the stream width; gravel or large boulders and bedrock prevalent; some cobble, and boulder particles are 0- 25% surrounded by fine sediment.stream width; gravel or large boulders and bedrock prevalent; some cobble, and boulder particles are 0- 25% surrounded by fine sediment.Gravel, cobble, and boulder particles are 0- 50% surrounded by fine sediment.Gravel, cobble, and boulder particles are 0- 50% surrounded by fine sediment.Only 3 of the 4 regimes present if fast-shallow is regimes present (slow- deep, slow shallow, fast- if missing, score lower than fit missing, score lower than fit missing, score lower than fit missing other regimes), score lower than if missing other regimes).Only 2 of the 4 habitat present if fast-shallow is are missing, score lower than if missing other regimes).New embankments gat 80% of bridge abutments; evidence of past channelization, i.e., dredging greater than 20 yr.) may be present.New embankments gat and 40 to 80% of stream and 90 to 80% of stream and less than 5% of the bottom affected by some tareas in bottom affected by some and less than 5% of the bottom affected by and less tha		1
*3. Embeddedness1 (evaluate in upstream & central portions of riffles) Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4. Velocity/Depth Regimes1 All four velocity/depth regimes present (slow- deep, slow shallow, fast- deep, fast shallow) Only 3 of the 4 regimes present if fast-shallow is missing, score lower than shallow or slow-shallow if missing other regimes.) Only 2 of the 4 habitat regimes present (if fast- velow regimes.) Do velow regimes.) 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5. Channel Alteration2 (only include downstream alteration when affecting reach) No channelization or dredging (greater than 20 yr.) may be present, but recent channelization, i.e., dredging (greater than 20 yr.) may be presen	Riffles or run virtually nonexistent; large boulders and bedroo prevalent; cobble acking.	
*3. Embeddedness1 (evaluate in upstream & central portions of riffles) Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4. Velocity/Depth Regimes1 All four velocity/depth regimes present (slow- deep, slow shallow, fast- deep, fast shallow) Only 3 of the 4 regimes present if fast-shallow is missing, score lower than finissing other regimes.) Only 2 of the 4 habitat regimes present (if fast- velower than if missing other regimes.) Dow regimes.) 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5. Channel Alteration2 (only include downstream alteration when affecting reach) No channelization or dredging (greater than 20 yr.) may be present, but recent channelization, i.e., dredging (greater than 20 yr.) may be present. <td>5 4 3 2</td> <td>1</td>	5 4 3 2	1
4. Velocity/Depth Regimes ' All four velocity/depth regimes present (slow- deep, slow shallow, fast- deep, fast shallow) Only 3 of the 4 regimes present if fast-shallow is missing, score lower than shallow or slow-shallow if missing other regimes.) Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score lower than if missing other regimes.) Donly 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score lower than if missing other regimes.) 5. Channel Alteration ² (only include downstream alteration when affecting reach) No channelization or dredging present. Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging (greater than 20 yr.) may be present, but recent channelization is not present. New embankments present on both banks; and 40 to 80% of stream disrupted. Bar present on both banks; and 40 to 80% of stream disrupted. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 5. Channel All four velocity/depting Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging (greater than 20 yr.) may be present, but recent channelization is not present. Noderate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottom Heat on old and new bars; 30- 50% of the bottom	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
Regimes'regimes present (slow- deep, slow shallow, fast- deep, fast shallow)present if fast-shallow is missing, score lower than if missing other regimes.)regimes present (if fast- wissing, score lower than shallow or slow-shallow are missing, score lower than if missing other regimes).veloc (ust are missing, score lower than if missing other regimes).2019181716151413121110987655.Channel Alteration2 (only include downstream alteration when affecting reach)No channelization or dredging present.Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging (greater than 20 yr.) may be present, but recent channelization is not present.Now embankments present, usually in areas of bridge abutments; evidence of past channelization is not present.Now embankments present on both banks; and 40 to 80% of stream 80% reach channelized and disrupted.Bar gab and 40 to 80% of stream disrupted.201918171615141312111098765*6. Sediment Deposition2 (evaluate in pools & depositional areas)Little or no enlargement of islands or point bars and less than 5% of the bottom affected bySome new increase in bar information, mostly from coarse gravel; 5- 30% of the bottomModerate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottom	5 4 3 2	1
5.Channel Alteration² (only include downstream alteration when affecting reach)No channelization or dredging present.Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging (greater than 20 yr.) may be present, but recent channelization is not present.New embankments present on both banks; and 40 to 80% of stream disrupted.Bar present on both banks; and 40 to 80% of stream disrupted.*6. Sediment Deposition² (evaluate in pools & depositional areas)20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 Some new increase in bottom affected bySome new increase in bar information, mostly from coarse gravel; 5- 30% of the bottomModerate deposition of new gravel coarse sand on old and new bars; 30- 50%	Dominated by 1 /elocity/depth regim /usually slow-deep).	
Alteration2 (only include downstream alteration when affecting reach)dredging present.present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging (greater than 20 yr.) may be present, but recent channelization is not present.present on both banks; and 40 to 80% of stream and 40 to 80% of stream disrupted.gab 80% cha disrupted.*6. Sediment Deposition2 (evaluate in pools & depositional areas)Little or no enlargement of islands or point bars and less than 5% of the bottom affected bySome new increase in bar information, mostly from coarse gravel; 5- 30% of the bottomModerate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottom	5 4 3 2	1
*6. SedimentLittle or no enlargementSome new increase in bar information, mostly from coarse gravel; 5- 30% of the bottomModerate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottomHea mater head bar information, mostly from coarse gravel; 5- 50% of the bottom	Banks shored with gabion or cement ov 30% of the stream re channelized and disrupted.	
*6. SedimentLittle or no enlargementSome new increase in bar information, mostly from coarse gravel; 5- 30% of the bottomModerate deposition of new gravel coarse sand on old and new bars; 30- 50% of the bottomHea mater depositional areas)	5 4 3 2	1
in pools. deposits at obstruction, pool construction and bends, to s	Heavy deposits of fir material increased b development; more 50% of the bottom changing frequently; pools almost absent o substantial sedim deposition.	ne ar than due

Note: Wadeable couplet scores only calculated if the Wadeable Riffle-Run Protocol (Chapter 3.1) is used. Semiwadable couplet score only calculated if Semiwadeable Large River Protocol (Chapter 3.4) is used.

* WADEABLE COUPLET SCORE (EMBEDDEDNESS + SEDIMENT DEPOSITION)

*SEMIWADEABLE TRIPLET SCORE (INSTREAM COVER + EPIFANUAL SUBSTRATE + EMBEDDEDNESS)

Note: Wadeable couplet scores only calculated if the Wadeable Riffle-Run Protocol (Chapter 3.1) is used. Semiwadable triplet score only calculated if Semiwadeable Large River Protocol (Chapter 3.4) is used.

Parameter			Optim			optimal			Marginal			Poor	
7. Riffle Frequency (riffle quantity; consider run:bend ratio)	der	divided b	r frequ betwe by the m equ	ent; en riffles width of als 5 to 7;	Occurrenc infrequent between ri the width c equals 7 to	distance ffles divide of the strea	d by m	bottom some h betwee the wid ⁻	contours abitat; dis n riffles di	orovide tance vided by tream is	Generally shallow ri habitat; di between r the width >25.	ffles; poc istance riffles div	or ided by
		20 19		17 16		-	11	10 9		76	54	3 2	1
8. Channel Flow Status²		Water re both low minimal channel exposed	er ban amour substr	ks and it of	Water fills available c <25% of cl substrate i	hannel; or nannel		availab riffle su	ills 25-759 le channe bstrates a exposed.	l and/or		and mostl	
*9. Condition of		20 19		17 16	15 14		11	10 9		76	54	32	1
(edge of water to ba delineation)		Banks st evidence bank fail	e of ero		Moderately infrequent erosion mo over.	small area	as of	to 60%	tely unsta of banks eas of ero	n reach	Unstable; areas; "ra frequent a sections a side slope bank has scars.	w" areas along stra and bend es, 60-10	aight s; on 0% of
	LDB	10	9	8	7	6		5	4	3	2	1	
Total	RDB	40	•	8	7	6		5		•	2		
**10. Bank Vegetati Protection ³ (edge of water to bai delineation)	ive	More tha stream b	ank su	of the Irfaces	70-90% of bank surfa by vegetat	the stream	ed	50-70%	o of the str irfaces co etation.		Less than stream ba covered b	ank surfa	ces
	LDB	10	9	8	7	6		5	4	3	2	1	
Total I	RDB	10	9	8	7	6		5	4	3	2	1	
11. Grazing or Othe	ər 🗋	Vegetati			Disruption				on obviou		Disruption		m
Disruptive Pressure (bankfull through rips	e ³ arian		is mini almos to grov	mal or not all plants	not affectir growth pot great exter one-half of plant stubb remaining.	ential to ar nt; more the the potent	ny an tial	closely vegetat than on potentia	s of bare s cropped ion comm e-half of t al plant stu emaining	on; less he ıbble	high; vega been rem inches or stubble ha	oved to 2 less in a	as 2
Disruptive Pressur (bankfull through ripa zone)	e ³ arian	mowing evident; allowed naturally	is mini almos to grov	mal or not all plants	growth pot great exter one-half of plant stubb	ential to ar nt; more the the potent	ny an tial	closely vegetat than on potentia	cropped ion comm e-half of t al plant stu	on; less he ıbble	high; vege been rem inches or	etation ha oved to 2 less in a	as 2
Disruptive Pressurd (bankfull through rips zone) Total	e ³ arian LDB RDB	mowing evident; allowed f naturally 10 10	is mini almos to grov 9 9	mal or not all plants v <u>8</u>	growth pot great exter one-half of plant stubb remaining. 7 7	ential to ar nt; more the the potent ole height <u>6</u>	ny an tial	closely vegetat than on potentia height r 5 5	cropped ion comm e-half of t al plant stu <u>emaining</u> <u>4</u> 4	on; less he ıbble <u>3</u>	high; vege been rem inches or stubble he 2 2	etation ha oved to 2 less in a eight. 1	as 2 verage
Disruptive Pressure (bankfull through rips zone) Total I 12. Riparian Vegeta Zone ³ (bankfull	e ³ arian LDB RDB ative	mowing evident; allowed f naturally 10 10 Width or >18 mete activities lots, road cuts, law	s mini almos to grov 9 riparia ers; hu (i.e., p dbeds, ns or o	mal or not all plants v 8 n zone man parking clear-	growth pot great exter one-half of plant stubk remaining. 7	ential to ar ht; more that the potential ble height 6 6 parian zone ers; humar ave impact	ny an tial e n ted	closely vegetat than on potentia height r 5 5 Width c 12 mete activitie	cropped ion comm e-half of t al plant stu emaining 4	on; less he ibble 3 2one 6- n pacted	high; vege been rem inches or stubble he	etation ha oved to 2 less in a eight. 1 1 iparian z ttle or no egetation	as verage one <6
Disruptive Pressure (bankfull through rips zone) Total I 12. Riparian Vegeta Zone ³ (bankfull through riparian zon	e ³ arian LDB RDB ative	mowing evident; allowed f naturally 10 10 Width or >18 mete activities lots, road cuts, law have not	s mini almos to grov 9 riparia ers; hu (i.e., p dbeds, ns or o	mal or not all plants v 8 8 n zone man parking clear- crops)	growth pot great exter one-half of plant stubb remaining. 7 Width of ri 12-18 met activities h	ential to ar ht; more that the potential ble height 6 6 parian zone ers; humar ave impact	ny an tial e n ted	closely vegetat than on potentia height r 5 5 Width c 12 mete activitie	cropped ion comm e-half of t al plant stu emaining 4 4 f riparian ers; huma s have im	on; less he ibble 3 2one 6- n pacted	high; vege been rem inches or stubble he 2 Width of r meters; lit riparian ve	etation ha oved to 2 less in a eight. 1 1 iparian z ttle or no egetation	as verage one <6

TOTAL HABITAT SCORE

¹ Reach scale: Evaluate parameter within the immediate vicinity of biological sampling reach.

² Expanded scale Evaluate parameter within sampling reach and at least 100m UPS of sampled reach, longer if visual extent allows.

³ Macro scale: Evaluate parameter based on expanded scale; can be extended further to account for characteristics within representative reach.

Water Monitoring Field Data Sheet (p 5 of 12)

Stream Flow Volume or Discharge Check to see if the United States Geological Survey (USGS) has the information for Stream Flow Volume or Discharge for your site. Check this Internet address:

water.usgs.gov/ "USGS Water Resources of the United States" Look under "Water Data": "Real-time"

If stream discharge data is available for your site, you can use this information rather than performing the procedures on the following pages (stream width, depth, and velocity). Make sure to check for this information BEFORE you go out to the stream site.

If the USGS does not have this information for your site, make sure to do all of the physical assessments and all of the math to save yourself or your SEC's designated Web Host time.

<u>Stream Width</u> Determine the average width of wadeable streams by measuring at 5 places within your sampling area and dividing the total by 5. For the purpose of converting feet to meters use: feet x 0.3048 = meters.

	⊦4		F+	+ <u> </u>		÷ 5 =
meters Sample 1	meters Sample 2	meters Sample 3	meters	meters	meters	meters
Non-	wadeable Str	eam	Sample 4	Sample 5	Total	Average Width
For non-wa	adeable strea	ms, if you ha	we recorded	stream width,	note WHA	T you have done below.
Notes:		·	<u></u>			

<u>Stream Depth</u> Determine the average depth for wadeable streams by measuring at 5 equal intervals along the width of the stream and dividing the total by 5. For the purpose of converting use: inches x 2.54 =centimeters centimeters $\div 100$ = meters.

·	+	+	+	+ =		÷ 5 =
meters	meters	meters	meters	meters	meters	meters
Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Total	Average Depth

___ Non-wadeable Stream

ł

For non-wadeable streams, if you have recorded stream depth, note WHAT you have done below. Notes:

Date / / / _____
Site ID # _____

Water Monitoring Field Data Sheet (p 6 of 12)

Surface Velocity

. .

Complete the following steps to determine the surface velocity of wadeable streams:

1. Measure and mark a 10 meter distance at your stream site, using the depth management line as the up stream mark. Each of the 5 intervals marked off to measure stream depth should be used as starting points for the weighted bobber.

2. Release the bobber at each of the 5 intervals, and time how long it takes the bobber to travel from the upstream mark down 10 meters to the downstream mark.

3. Divide the 10 meter distance by the travel time of the bobber to determine the stream's surface velocity.

4. Run the test 5 times, once at each of the 5 intervals you used for measuring depth along the transect, and take the average.

Ĺ

Trial #1: meters ÷	time (seconds) =	meters per second
Trial #2: meters ÷	time (seconds) =	meters per second
Trial #3: meters ÷	time (seconds) =	meters per second
Trial #4: meters ÷	time (seconds) =	meters per second
Trial #5: meters ÷	time (seconds) =	meters per second
	Total = + 5 = _	meters per second

Non-wadeable stream

For non-wadeable streams, if you have recorded surface velocity, note WHAT you have done below.
Notes:

Average Velocity

Date	/	/
Site ID #		

Water Monitoring Field Data Sheet (p 7 of 12)

Stream Flow Volume or Discharge

Calculate the streamflow volume (cubic meters/second - cms) using the above measurements. Check here if stream discharge data was obtained from the USGS. Enter this data below as the Stream Flow Volume in cubic meters/second. (You will need to convert cubic feet/second to cubic meters/second.) For the purpose of converting cfs (cubic feet/second) to cms use: cfs x 0.0283.= cms

$\mathbf{w} \mathbf{x} \mathbf{d} \mathbf{x} \mathbf{v} \mathbf{x} \mathbf{k} = \mathbf{cms}$

{

 $\frac{X X X}{\text{Avg. Width}} = \frac{X X}{\text{Avg. Depth}} = \frac{\text{cms}}{\text{Avg. Velocity}}$ (meters) / (meters) / (meters sec.) / (stream bottom constant)

*k = stream bottom constant (0.8 if it's rubble/gravel or 0.9 if it is sand, mud, silt or bedrock)

Ice Coverage, if any (refer to page 46) _____%

Snow Depth, if any inches

······

<u>Wildlife seen (alive or dead) or heard</u> – Please identify species (see Extras Appendix) when possible, and/or take a photo when able.

Seasonal Changes Observed

Weather Notes (example: our county is under a drought watch, tornados touched down in area earlier this week)

Date ____ / ____ Site ID # _____