Lancaster County Conservation District Water Quality Volunteer Coalition (WQVC) Study Design of Lancaster County

Amanda Goldsmith & Noelle Cudney
Farm & Home Center
1383 Arcadia Road, Room #200
Lancaster, PA 17601
(717) 299-5361 ext 2557

revised 2024

Table of Contents

Introduction:	
Lancaster County Conservation District & WQVC	3
Our County and Its' Waters	3
Background Information on the Waters of Interest	4
Current Status of Our Waters of Interest	9
Monitoring Implementation & Analysis:	
Monitoring Purpose & Goals	11
Monitoring Equipment & Data Quality	12
Sampling Methods	14
Sampling Locations	16
Sampling Frequency	25
Quality Assurance/Quality Control (QA/QC)	25
Data Analysis	26
Project Tasks and Personnel	28
Technical Committee	28
Annual Page	
Appendices:	

Field Data Sheets......Appendix A

Introduction

Lancaster County Conservation District & WQVC

Lancaster County Conservation District (LCCD) is an organization that is concerned with the natural resources of Lancaster County. LCCD's main focus is the protection and conservation of those natural resources. The District's programs are multifaceted and deal with a variety of topics and issues. Programs that the District is involved with are: Chesapeake Bay Program, Nutrient Management, Erosion and Sedimentation Control, Educational Outreach, Ombudsman, and Watershed Protection. All of the above programs are run in conjunction with County, State, and Federal entities, and funding is provided through several avenues.

In July of 2001, Lancaster Healthy Communities (LHC) convened a collaborative with, the Environmental Alliance for Senior Involvement (EASI), Office of the Aging, and Retired Senior Volunteer Program (RSVP) to form the Water Quality Volunteer Coalition (WQVC) of Lancaster County. The primary goal of this corps was water quality monitoring, however; volunteers have expanded the scope of WQVC by getting involved in various other projects throughout the county that focus on water quality issues. Some examples of projects our volunteers have taken on are; stream restoration, stream bank planting, environmental education, intergenerational mentoring, stream clean-ups, fish stocking, flora and fauna identification, trail marking, seeding, weeding and much more. In October of 2003 the Lancaster County Conservation District took over the EASI program from LHC.

The volunteer's efforts will help to strengthen watershed awareness in Lancaster County through education, programs, policy, and through broad involvement of citizens in their watersheds.

This document was compiled by a committee whose members included; the county watershed specialist and WQVC volunteers. It will serve as a strategic plan for the county's water quality monitoring efforts. Due to the nature of this work, this document will be continually evolving. Updated versions will be available as necessary.

Our County and Its Watersheds

Watersheds of Lancaster County, located in south central Pennsylvania, feed directly into the Susquehanna River and contribute more nutrient pollutants from agriculture than any other county in the Chesapeake Bay. Approximately 80% of the county's land is designated for agricultural purposes, and much of that land is actively utilized for both crops and livestock. This agriculture takes place on gently sloping hills with karst, soluble limestone subsoils.

Nutrient and sediment loading are the primary concerns in Lancaster County originating from non-point pollution (NPS) sources including agriculture and urban sources. This includes farm applications of pesticides, fertilizer, and manure; urban/suburban pesticide lawn applications, sediment from non-vegetated soil (urban and ag land use), various compounds from roads (road salts, engine oil, animal waste, and others), and many other sources.

Some of the major issues on farms include a lack of riparian buffer, unrestricted livestock access to the stream, and overuse and misuse of pesticides, fertilizers, and manure. Excess nutrients from fertilizer and manure are a significant source of nutrients including nitrogen and phosphorous. Manure also carries bacteria which leaches into groundwater, affects livestock health, and alters the stream ecosystem.

Streams on farms are typically next to pasture because the area is too wet to farm. For this reason, livestock historically are pastured by the stream and farmers only keep pasture grass growing for the animals. Cows and other farm animals then tear up and compact the unprotected stream banks, leading to streambank erosion.

Finally, tillage practices and crop harvest can leave soil exposed for long periods, a significant source of sediment to waterways. Dams are also a common historical feature on farms from past mill production which has caused significant legacy sediment build up behind streams. Combined with a lack of riparian buffer protecting the banks and providing needed habitat, Lancaster's streams face multiple issues that are leading to their degradation

Urban and suburban areas also contribute a significant portion of pollution to Lancaster streams. The county population has increased dramatically in the past few decades along with development. Increased impervious surface with minimal water retention mechanisms results in: 1. Increase stormwater runoff volume and velocity 2. Thermal impacts 3. Direct inputs of road salts, engine oils, and other compounds from roadways, home and industry. Increased development is also associated with more lawn which has limited water holding capacity, leading to similar issues with stormwater runoff.

Both of these NPS pollutions have led to the stream degradation of Lancaster County. In some cases, water flow, chemistry, temperature, and habitat have been altered so greatly that most plants, insects, and fish cannot live there. However, the positive story is significant work has been done over decades to combat these issues from the private and public sectors. WQVC monitors work to long-term quantify how are these practices working and if we are seeing our water quality improve. These individuals are motivated and want to support the work of their community by obtaining quality, usable data on the impact of these projects and the state of our waters.

Members will also monitor in locations to determine the impact of development, industry, sewage treatment plants, woodlands and wetlands.

Our main goals are to:

- Measure the quality of water throughout selected watersheds of Lancaster County.
- Use data to show measurable environmental results in water quality due to restoration efforts.
- Determine where current restoration practices need to be modified and/or expanded.
- Raise state water quality designations where possible.
- Educate the public about the threats facing our waterways.
- Support current restoration efforts and the groups involved.

Background on Waters of Interest

The information in the chart below (Table 1A) was taken from a map designed by the Lancaster County GIS Department using aerial photographs from 1993. The original map was 36" X 48" and was minimized by Lancaster Blueprint Company to 18" X 24" for the purpose of this report.

The streams in column 1 were chosen by members of the Study Design Committee for various reasons; however, each stream has a minimum of one monitoring location listed in Table 6A. Please note that the percentages of land use listed in column 4 are <u>estimates and should only be used as a guideline for the designated watershed.</u>

 Table 1A Land Usage for Lancaster's Watersheds according to WikiWatersheds

Water of Interest	Watershed	Body of Water into which Water of Interest Flows	Land Usage in Watershed
Chiques Creek	Chiques	Susquehanna River	51% Cultivated Crops 11% Pasture/Hay 11% Deciduous Forest 8% Developed, Open Space 7% Developed, Low Density 3% Developed, Medium Density 1% Developed, High Density <1% Mixed Forests <1% Shrub/Scrub <1% Woody Wetlands <1% Grassland Herbaceous <1% Evergreen Forest <1% Open Water <1% Barren Land <1% Emergent Herbaceous Wetlands
Cocalico Creek	Cocalico	Conestoga River	28% Deciduous Forest 31% Cultivated Crops 11% Pasture/Hay 10% Developed, Open Space 7% Developed, Low Density 1% Scrub/Shrub 3% Developed, Medium Density 1% Woody Wetlands 1% Developed, High Density 1% Open Water 5% Mixed Forests <1% Grassland Herbaceous <1% Evergreen Forest <1% Barren Land <1% Emergent Herbaceous Wetlands
Conestoga River	Conestoga	Susquehanna River	27% Cultivated Crops 20% Pasture/Hay 19% Deciduous Forest 10% Developed, Open Space 10% Developed, Low Density 6% Developed, Medium Density 1% Scrub/Shrub 2% Developed, High Density <1% Barren Land 1% Woody Wetlands 4% Mixed Forests <1% Grassland Herbaceous <1% Evergreen Forest <1% Open Water <1% Emergent Herbaceous Wetlands

Conoy Creek	Conoy	Susquehanna River	43% Cultivated Crops 11% Pasture/Hay 13% Developed, Open Space 12% Developed, Low Density 5% Deciduous Forest 6% Developed, Medium Density 1% Scrub/Shrub 2% Developed, High Density 6% Mixed Forests <1% Woody Wetlands <1% Grassland Herbaceous <1% Evergreen Forest <1% Open Water <1% Barren Land <1% Emergent Herbaceous Wetlands
Fishing Creek	Fishing	Susquehanna River	38% Cultivated Crops 18% Deciduous Forest 16% Open Water 12% Pasture/Hay 6% Developed, Open Space 1% Scrub/Shrub 6% Mixed Forests <1% Woody Wetlands 1% Developed, Low Density <1% Evergreen Forest <1% Developed, High Density <1% Developed, Medium Density <1% Grassland Herbaceous <1% Emergent Herbaceous Wetlands
Hammer Creek	Hammer	Cocalico Creek	32% Deciduous Forest 37% Cultivated Crops 12% Pasture/Hay 7% Developed, Open Space 4% Developed, Low Density 4% Mixed Forests 1% Developed, Medium Density <1% Scrub/Shrub <1% Open Water <1% Open Water <1% Developed, High Density <1% Mixed Forests <1% Woody Wetlands <1% Grassland Herbaceous <1% Evergreen Forest <1% Barren Land <1% Emergent Herbaceous Wetlands
Little Conestoga Creek	Little Conestoga	Conestoga River	33% Cultivated Crops 16% Developed, Open Space 19% Developed, Low Density 8% Pasture/Hay 10% Developed, Medium Density 2% Deciduous Forest 6% Developed, High Density 1% Scrub/Shrub 5% Mixed Forests <1% Evergreen Forest 1% Barren Land

			<1% Woody Wetlands
			<1% Grassland Herbaceous
			<1% Open Water
			<1% Emergent Herbaceous Wetlands
			The Line general according to the management
Lititz Run	Lititz	Conestoga River	39% Cultivated Crops
		_	13% Pasture/Hay
			14% Developed, Open Space
			16% Developed, Low Density
			2% Deciduous Forest
			8% Developed, Medium Density
			2% Developed, High Density
			<1% Scrub/Shrub
			<1% Open Water
			4% Mixed Forests
			<1% Woody Wetlands
			<1% Grassland Herbaceous
			<1% Evergreen Forest
			<1% Barren Land
Mill Creek	Mill	Conestoga River	49% Cultivated Crops
Willi Orcck	IVIIII	Oonestoga Miver	12% Pasture/Hay
			•
			10% Developed, Open Space
			6% Deciduous Forest
			10% Developed, Low Density
			6% Developed, Medium Density
			3% Developed, High Density
			1% Scrub/Shrub
			3% Mixed Forests
			<1% Evergreen Forest
			<1% Barren Land
			<1% Woody Wetlands
			<1% Grassland Herbaceous
			<1% Open Water
			<1% Emergent Herbaceous Wetlands
Dogues Creek	Dogues	Cuaruahanna Divar	
Pequea Creek	Pequea	Susquehanna River	44% Cultivated Crops
			15% Pasture/Hay
			16% Deciduous Forest
			9% Developed, Open Space
			6% Developed, Low Density
			1% Scrub/Shrub
			6% Mixed Forests
			2% Developed, Medium Density
			1% Developed, High Density
			<1% Evergreen Forest
			<1% Barren Land
			<1% Woody Wetlands
			<1% Grassland Herbaceous
			<1% Open Water
Canavinas Caral	Constitutes	Cusavaharra Direc	<1% Emergent Herbaceous Wetlands
Conowingo Creek	Conowingo	Susquehanna River	52% Cultivated Crops
			15% Pasture/Hay
			15% Deciduous Forest
			7% Developed, Open Space
			1% Scrub/Shrub
			2% Developed, Low Density
		l	

			<1% Evergreen Forest 5% Mixed Forests 1% Woody Wetlands 1% Developed, Medium Density <1% Developed, High Density <1% Grassland Herbaceous <1% Open Water <1% Barren Land <1% Emergent Herbaceous Wetlands
Climbers Run	Pequea	Pequea Creek	31% Deciduous Forest 28% Cultivated Crops 11% Pasture/Hay 11% Developed, Open Space 12% Mixed Forests 1% Scrub/Shrub 4% Developed, Low Density 1% Developed, Medium Density <1% Woody Wetlands <1% Grassland Herbaceous <1% Evergreen Forest <1% Open Water

Table 1B Current Status of Our Waters of Interest

Streams	Stream Designatio n	Actual Uses & Values	Non-Point Source (NPS) Pollution	Source of Impairment	Cause of Impairment	Known Problems Conflicts, or Threats	Known Efforts To Address Problems
Chiques Creek	WWF	Recreation & Agriculture	Yes	Agriculture	Nutrients & Siltation	Agriculture, Stormwater, & Wastewater	Chiques Creek Watershed Alliance
Cocalico Creek	WWF	Recreation & Agriculture	Yes	Agriculture, Urban runoff, & Storm sewers	Nutrients, Siltation, & Causes Unknown	Agriculture, Stormwater, & Wastewater	Cocalico Creek Watershed Association
Conestoga River	WWF	Drinking water, Recreation, & Agriculture	Yes	Agriculture, Municipal Point source, Residential runoff, Upstream Channels, Removal of veg., & Other	Nutrients, Organic enrichme nt, Low D.O., Chlorine, Siltation, & Flow alteration	Agriculture, Stormwater, & Wastewater	Conestoga River Club
Conoy Creek	WWF	Recreation & Agriculture	Yes	Agriculture, Urban runoff, & Storm sewers	Nutrients & Siltation	Agriculture, Stormwater, & Wastewater	Conoy Creek Watershed Association
Fishing Creek	CWF	Recreation & Agriculture	Yes	Agriculture	Nutrients Siltation	Agriculture & Stormwater	Friends of Fishing Creek Watershed Association
Hammer Creek	WWF	Recreation & Agriculture	Yes	Agriculture	Nutrients Siltation	Agriculture, Stormwater, & Wastewater	Hammer Creek Watershed Association
Landis Run	WWF	Recreation & Agriculture	Yes			Agriculture & Stormwater	None
Little Conestoga Creek	WWF & TSF	Recreation & Agriculture	Yes	Agriculture, Urban runoff, Storm sewers, & Industrial point source	Nutrients, Siltation, & Cause Unknown	Agriculture, Stormwater, & Wastewater	Little Conestoga Watershed Alliance

Lititz Run	CWF	Recreation & Agriculture	Yes	Urban runoff/ Storm sewers	Suspend ed solids	Agriculture, Stormwater, & Wastewater	Lititz Run Watershed Alliance
Mill Creek	CWF & WWF	Recreation & Agriculture	Yes	Agriculture	Nutrients & Siltation	Agriculture & Stormwater	Mill Creek Preservation Association
Muddy Creek	WWF	Recreation & Agriculture	Yes	Agriculture	Nutrients & Siltation	Agriculture & Stormwater	None
Pequea Creek- Eshleman/ Londonland Run	CWF	Recreation & Agriculture	Yes	Agriculture, Municipal Point source, & Residential runoff	Nutrients, Organic enrichme nt, & Siltation	Agriculture, Stormwater, & Wastewater	Paradise Sportsman Association & Pequea Creek Watershed Association
Swarr Run	TSF	Recreation & Agriculture	Yes	Agriculture	Nutrients & Siltation	Agriculture & Stormwater	Little Conestoga Watershed Alliance

The most pressing water quality issue(s) facing our waters of interest are:

- Stream bank erosion
- Livestock contamination & general agricultural runoff issues
- Minimal riparian zones/buffers
- Urban runoff
- Development/Sprawl

Monitoring Implementation & Analysis

Purpose & Goals

Table 2A Gaps and Issues in Monitoring

1) Issue	2) Information Needed	3) Existing Monitoring
		Efforts
Stream-bank erosion	Visual, chemical & macroinvertebrate assessments	Variable
Livestock contamination	Visual, chemical & macroinvertebrate assessments	Variable
Lack of riparian buffers	Visual, chemical & macroinvertebrate assessments	Variable
Urban run-off	Chemical testing done by a certified lab following PADEP protocols	None

Monitoring Questions

- Where are the impaired waters that should be a high priority for restoration? What is causing these impairments?
- Where are the threatened waters that should be a high priority for protection? What is causing these threats?
- What is the impact of various types of land and water use activities on ecological conditions and human uses? (e. g. various types of point and non-point source pollution).
- How effective are various strategies (e.g. wastewater treatment, best management practices) in protecting and restoring ecological integrity?
- How effective are various post-construction stormwater management facilities?

Monitoring Purposes

- Community Education and Awareness
- Baseline Data Collection
- Water Quality Education to Secondary Students
- Community and/or Watershed Level Assessment
- State and Federal Agency Assessment

Table 2B. List of intended uses and users of the information we collect.

User	Uses
Watershed Associations	Determine the needs and effectiveness of restoration efforts
Nature Abounds	Use as baseline data for PADEP
Conservation District	Education Focus of compliance efforts
Local School Students	Education and/or research related studies
Local County Citizens	Education/Awareness Encourage more citizen-based activity
Pennsylvania Department of Environmental Protection	To determine if designations/classification standards are being met and to upgrade stream classifications
Lancaster County Planning Commission	Planning purposes and public information for county residents
Environmental Group (Chesapeake Bay Foundation, Alliance for the Chesapeake Bay, Susquehanna River Basin Commission, etc.)	Determine effects of restoration efforts in Lancaster County streams and how this relates to the rest of the Bay

Monitoring Equipment & Data Quality

At this time, WQVC will be performing a Basic Watershed Inventory and Assessment. This consists of a Watershed Inventory and a Condition and Trend Assessment of Wadeable Waters. We will be measuring air and water temperature, dissolved oxygen, total phosphates, conductivity, pH, salinity, total dissolved solids, total alkalinity, nitrate-nitrogen, turbidity, flow, and benthic macroinvertebrates. Habitat assessments will also be conducted biannually to physically assess the stream over time.

Table 4A Data Quality Objectives for Sampling

Sample Type	Completeness	Representativeness
All Except macroinvertebrates	80% at 12 samples/year	All samples will be taken in the midstream section of the monitoring site.
Macroinvertebrates	100% at 2 samples/year	All samples will be taken in the midstream section of the monitoring site.
Visual Habitat Assessment	100% at 2 samples/year	All samples will be taken from the bank looking approximately 100 yards upstream & downstream.

Table 4B Data Quality Objectives for Analysis

Parameter	Detection Limit/Measurement Range	Units	Practical Quantitation Limit	Precision	Accuracy
Temperature	Armored Thermometer/0-100	° Celsius or Fahrenhe it	0	<u>+</u> 20%	± 0.5 ° C
Dissolved Oxygen	Dissolved Oxygen Meter	mg/l	0.2	<u>+</u> 20% RPD*	75-125% recovery**
рН	PcoketPro	pH units	1.0	<u>+</u> 20% RPD*	90-110% recovery**
Conductivity	PocketPro	uS/cm	10	<u>+</u> 20% RPD*	<u>+</u> 10 uS/cm
Total Phosphate	Colorimeter	mg/l	0.1	<u>+</u> 20% RPD*	75-125% recovery**
Nitrate	Colorimeter	mg/l	0	<u>+</u> 20% RPD*	75-125% recovery**
Turbidity	Colorimeter	Mg/I	0	<u>+</u> 20% RPD*	75-125% recovery**
Alkalinity	End Point Titration/5-400	mg/l	5	<u>+</u> 20% RPD*	75-125% recovery**
Total Dissolved Solids	PcoketPro	mg/l	10	<u>+</u> 20% RPD*	90-100% recovery**
Salinity	PocketPro	mg/l	0.1	<u>+</u> 20% RPD*	90-100% recovery**

*RPD (Relative Percent Difference) =
$$\frac{|X_S - X_d|}{\left(\frac{X_S + X_d}{2}\right)} \times 100$$

Where: X_s = result for the sample & X_d = result for the duplicate sample

^{**}Percent (%) Recovery = Measured Value/Calibration Standard Value x 100

Sampling Methods

 Table 5A: Sample Collection Methods

Indicator	What will be sampled	Sampling containers or devices/ preservatio n	Quantity of sample to be collected	# of samples collected per site	Methods Reference
Temperature	Mid/Mid Stream	Direct	N/A	N/A	Thermometer
рН	Mid/Mid Stream	Direct	N/A	N/A	PocketPro
Dissolved Oxygen	Mid/Mid Stream	Direct	N/A	N/A	Dissolved Oxygen Meter
Conductivity	Mid/Mid Stream	Direct	N/A	N/A	PocketPro
Nitrates	Mid/Mid Stream	Direct	10 ml	2	Colorimeter
Total Phosphate	Mid/Mid Stream	Direct	10 ml	2	Colorimeter
Turbidity	Mid/Mid Stream	Direct	10 ml	2	Colorimeter
Alkalinity	Mid/Mid Stream	Plastic/ Glass Bottle	5 ml	2	H ₂ S0 ₄ eyedropper Bromcisciol
Total Dissolved Solids	Mid/Mid Stream	Direct	N/A	N/A	PocketPro
Benthic Macoinvertabates	Stream Bottom	Kick net	1 sq. meter	2-3	Kick nets
Salinity	Mid/Mid Stream	Direct	N/A	N/A	PocketPro

Table 5B: Sample Analysis Methods

Indicator	How Sample Transported to Lab	Maximum Holding Time	Method Reference	Brief Description of Method	Reporting Units
Temperature	N/A Field	Analysis done on site	Direct Pocket pen	Direct	Degrees C
PH	N/A Field	Analysis done on site	Direct PocketPro	Direct	-
DO	N/A Field	Analysis done on site	DO Meter	Direct	mg/l (ppm)
Conductivity	N/A Field	Analysis done on site	Direct PocketPro	Direct	uS/cm
Nitrates	Dark & Cool 4°C	48 hours refrigerated	Colorimeter	Direct	mg/l (ppm)
Total Phosphate	Dark & Cool 4°C	48 hours refrigerated	Colorimeter	Direct	mg/l (ppm)
Turbidity	N/A Field	Analysis done on site	Colorimeter	Direct	mg/l (ppm)
Alkalinity	Dark & Cool 4°	24 hours refrigerated	Sulfuric acid titration	Sulfuric acid Titration	mg/l (ppm)
Total Dissolved Solids	N/A Field	Analysis done on site	Direct PocketPro	Direct	mg/l (ppm)
Macroinvertebrates	N/A Field	1 hour	visual	Visual I.D.	Actual count
Salinity	N/A Field	Analysis done on site	Direct PocketPro	Direct	mg/l (ppm)

^{*} The places of analysis for each indicator listed in this table are recommended locations. However, any test that is not a direct sample may be analyzed back at the lab or in the field.

Sampling Locations

As of 2023, there are 82 active sampling locations and 32 inactive sampling locations in the Water Quality Volunteer Coalition. Table 6A displays active and inactive sites with information on the Site ID, waterbody name, location description, group monitoring (if applicable), lat/long, and sampling status. Sampling status was determined if sites have been sampled in the last 3 years and will be updated as needed. Table 6B indicates location of analysis for sampling tests.

Table 6A: Sampling Site List

Site	Location	Group	Watershed	Latitude	Sampling
Number/ID		Monitoring		Longitude	Status
CCMP	Chiques Creek -	Chiques Creek	Chiques	40.167896,	Active
#101	Manheim Memorial Park on E. High St.	Watershed Association		-76.3836358	
CCLL	Chiques Creek -	Chiques Creek	Chiques	40.109296,	Active
#102	Leiderkranz Auction House	Watershed Association		-76.445993	
CC4	Chiques Creek - Near	Chiques Creek	Chiques	40.063057,	Active
#107	USGS monitoring sonde on Rt 23 in Marietta	Watershed Association		-76.515586	
LCCCOP	Little Chiques Cr	Chiques Creek	Little Chiques	40.117818,	Active
#103	Cove Outlook Park	Watershed Association		-76.502451	
LC-Rt230	Little Chiques Cr	Chiques Creek	Little Chiques	40.1101255,	Active
#104	Rt. 230	Watershed Association		-76.4910665	
DRSEAREC	Dellinger Run	Chiques Creek	Chiques	40.121361,	Sampling
#119	At PSU SEAREC	Watershed Association		-76.4265	quarterly
CoC2	Cocalico Creek		Cocalico	40.1878,	Active
#3	Church St – before bridge in Ephrata			-76.17	
CoC3-1	Cocalico Creek #1		Cocalico	40.232061,	Active
#114	Filter plant (#1 in sampling sequence)			-76.140399	
LCoCC	Little Cocalico Cr		Cocalico	40.232114,	Active
#115	2 nd Street (#2 in sampling sequence)			-76.131685	
CoC3-3	Cocalico Creek #3		Cocalico	40.226822,	Active

#116	Hertzog's Garage (#3 in sampling sequence)			-76.13156	
HC5	Hammer Creek @		Cocalico	40.219901,	Active
#106	Speedwell Forge			-76.333041	
Mud2	Muddy Creek		Cocalico	40.1792,	Active
#26	Brubaker Park			-76.0817	
Mud3	Muddy Creek		Cocalico	40.1964,	Active
#27	Above Black Run			-76.0569	
LaR3	Landis Run		Conestoga	40.075,	Active
#13	Butter Rd under Bridge (07638)			-76.2694	
Kurtz1	Kurtz Run 1	Landis Homes	Conestoga	40.111858,	Active
#99	North fork of Kurtz Run			-76.2621	
Kurtz2	Kurtz Run 2	Landis Homes	Conestoga	40.111229,	Active
#100	Confluence of North Fork			-76.262563	
C4	Conestoga River		Conestoga	40.000654,	Active
#105	Windolph Landing Park			-76.323241	
C5	Conestoga River @		Conestoga	40.070234,	Active
#108	Eden Mill			-76.261574	
C6	Conestoga River @		Conestoga	40.02471,	Active
#110	Rocky Springs			-76.275684	
BR1	Bachman Run @		Little	40.1114,	Active
#1	Fruitville Pike		Conestoga	-76.3325	
LC5	Little Conestoga Cr		Little	40.063185,	Active
#96	West Roseville Rd behind Park City		Conestoga	-76.342804	
GR1	Granite Run		Little	40.0775308, -	Active
#97	Granite Run Rd and Fruitville Pike		Conestoga	76.328059	
LC6	Little Conestoga Cr		Little	40.026313,	Active
#98	Conestoga Country Club		Conestoga	-76.354381	

Brubaker	Brubaker Run		Little	40.044773,	Active
Run	Radar Park		Conestoga	-76.354849	
#109					
SR4	Swarr Run	Woodcrest	Little	40.071288,	Active
#117	Woodcrest Village	Village	Conestoga	-76.352603	
SR5	Swarr Run		Little	40.09544, - 76.39762	Active
#118	Amos Herr Park		Conestoga	70.59702	
CW1	Little Conowingo Cr		Conowingo	39.76356,	Active
#47	Goat Hill Rd			-76.1679	
CW2	Conowingo Cr @		Conowingo	39.77364,	Active
#48	Wakefield			-76.1702223	
CW3	Conowingo Cr @		Conowingo	39.8588,	Active
#49	Scotland Rd			-76.20147	
CW4	Conowingo Cr @		Conowingo	39.8304,	Active
#50	Weaver Farm - Cardinal Dr.			-76.1892	
CW5	Conowingo Cr @ New		Conowingo	39.7453844, -	Active
#91	Texas			76.1722349	
CW6	Conowingo Cr @		Conowingo	39.7893337, -	Active
#92	Suplee Farm			76.1683638	
CW7	Conowingo Cr @		Conowingo	39.841762,	Active
#113	McFarland Run			-76.18561	
Mill1	Mill Cr	Garden Spot	Mill	40.0856,	Active
#21	Overly's Grove Rd	Village		-76.0442	
Mill1A	Mill Cr	Garden Spot	Mill	40.0894,	Active
#32	SW of Kinzer Rd	Village		-76.0692	
Mill2	Mill Cr	Garden Spot	Mill	40.0817,	Active
#22	Meadow Creek Rd	Village		-76.0861	
Mill3	Mill Cr	Garden Spot	Mill	40.0764,	Active
#23	Maple Grove Rd	Village		-76.0944	
Mill4	Mill Cr	Garden Spot	Mill	40.0625,	Active
#33	Below Rt. 772 bridge	Village		-76.1567	

Mill5	Mill Cr	Garden Spot	Mill	40.0536,	Active
#34	West of Monterey Rd	Village		-76.1725	
Mill6	Mill Cr	Garden Spot	Mill	40.0558,	Active
#24	East of Gibbons Rd	Village		-76.1803	
Mill7	Mill Cr	Garden Spot	Mill	40.0264,	Active
#35	East of Strasburg Pk	Village		-76.2414	
Mill9	Mill Cr	Garden Spot	Mill	40.009417,	Active
#93	County Park	Village		-76.286595	
Bells Run	Bells Run	Octoraro	Octoraro	39.887816,	Active
#70	Rynear Rd - downstream	Watershed Association		-76.045817	
Bells Run	Bells Run	Octoraro	Octoraro	39.89775,	Active
#71	Bartville Rd - upstream	Watershed Association		-76.05285	
Annan Run	Annan Run	Octoraro	Octoraro	39.897857,	Active
#72	Creek Rd	Watershed Association		-75.995203	
Coopers Run #73	Coopers Run Mount Eden Rd	Octoraro Watershed Association	Octoraro	39.831417, -76.025528	Active
MH Cr #74	Meetinghouse Cr Between Heyberger Rd and Lamparter Rd	Octoraro Watershed Association	Octoraro	39.91252, -76.06882	Active
NM Run	Nickel Mines Run	Octoraro	Octoraro	39.9127,	Active
#75	Between Heyberger Rd and Lamparter Rd	Watershed Association		-76.06865	
Bells Run	Bells Run	Octoraro	Octoraro	39.84649,	Active
#76	Street Rd	Watershed Association		-76.02204	
East	East Branch Octoraro	Octoraro	Octoraro	39.8467,	Active
Branch #77	Street Rd (Bellbank)	Watershed Association		-76.02043	
West Branch	West Branch Octoraro	Octoraro Watershed	Octoraro	39.82485,	Active
#78	White Rock	Association		-76.08998	

Muddy Run	Muddy Run	Octoraro	Octoraro	39.831437,	Active
#79	Homeville Rd	Watershed Association		-76.004965	
Rattlesnake Run #80	Rattlesnake Run Glenville Rd	Octoraro Watershed Association	Octoraro	39.86197, -75.97205	Active
Basin Run #81	Basin Run McCauley Rd	Octoraro Watershed Association	Octoraro	39.6618 -76.1474	Active
Stone Run #82	Stone Run Horseshoe Rd	Octoraro Watershed Association	Octoraro	39.7029833, -76.1094667	Active
Octoraro #83	Octoraro Mainstem Moore Rd – railway	Octoraro Watershed Association	Octoraro	39.659947, -76.152979	Active
Octoraro #84	Octoraro Mainstem Horseshoe Rd	Octoraro Watershed Association	Octoraro	39.7066667, -76.1155556	Active
Knights Run #85	Knights Run Ross-Fording Rd	Octoraro Watershed Association	Octoraro	39.884646, -75.978733	Active
Good2 #86	Goods Run #2 Indian Hill Rd	Octoraro Watershed Association	Octoraro	39.946972, -76.290444	Active
NM Run #95	Nickel Mines Run Mine Rd	Octoraro Watershed Association	Octoraro	39.9517407, - 76.0767732	Active
Climb1 #40	Climbers Run - SRREC LCC Nature Preserve		Pequea	39.920757, -76.29744	Active
Stein1 #41	Steinman Run - Stump R., LCC Nature Preserve		Pequea	39.905046, -76.286754	Active
PEQ3 #59	Pequea – Sickman's Mill		Pequea	39.934767, -76.323032	Active
Stein3 #61	UNT Steinman Run- South of Clearview Rd.		Pequea	39.893916, -76.286239	Active
Climb3 #63	Climbers Run #3 Below pipeline		Pequea	39.91547, -76.312588	Active

Trout1	Trout Run		Pequea	39.91528,	Active
#65				-76.286944	
Silv1	Silvermine Run #1		Pequea	39.9447,	Active
#66	Downstream			-76.313433	
Silv2	Silvermine Run #2		Pequea	39.94755,	Active
#67	Upstream			-76.314952	
PEQ2	UNT Pequea Cr		Pequea	39.94411,	Active
#68	Silvermine Road			-76.319114	
Peq4	UNT Pequea Cr		Pequea	39.978784,	Active
#90	Penn Grant Rd			-76.2272	
Fish1	Fishing Cr	LCC	Susquehanna	39.831478,	Active
#42	Scalpy Hollow Rd (North)			-76.245341	
Kelly1	Kellys Run	LCC	Susquehanna	39.836524,	Active
#43	LCC Nature Preserve			-76.339021	
Tuc1	Tucquan Cr	LCC	Susquehanna	39.86339,	Active
#45	LCC Nature Preserve			-76.341193	
Fish2	UNT Fishing Cr		Susquehanna	39.828759,	Active
#51	Osceola Dr			-76.242286	
Fish5	Fishing Cr	LCC	Susquehanna	39.795743,	Active
#54	Hollow Rd (South)			-76.254952	
Fish6	Fishing Cr		Susquehanna	39.814735,	Active
#55	Drumore Park			-76.237063	
Fish7	Fishing Cr		Susquehanna	39.851725,	Active
#56	Metzler Sisters			-76.243605	
Fish8	UNT Fishing Cr		Susquehanna	39.81847,	Active
#57	Furniss and Scalpy Hollow Rd			-76.244814	
TucTrib1	Clark Run		Susquehanna	39.864814,	Active
#62	Small tributary			-76.340042	
Fish9	UNT Fishing Cr		Susquehanna	39.83547,	Active
#69	Moser Site			-76.24224	

Fish10	UNT Fishing Cr	Susquehanna	39.823361,	Active
#87	Site at River Road		-76.234518	
Fish11	UNT Fishing Cr	Susquehanna	39.819652,	Active
#88	Site upstream of Drumore Park		-76.235481	
Fish12	UNT Fishing Cr	Susquehanna	39.819404,	Active
#89	UNT flows into Drumore Park		-76.235255	
CC3	Chiques Cr	Chiques	40.1717,	Inactive
#39	Adele Ave (next to Manheim HS)		-76.3894	
HC4	Hammer Cr	Cocalico	40.1747,	Inactive
#11	Buch Mill Rd		-76.2553	
Mud1	Muddy Cr	Cocalico	40.1744,	Inactive
#25	Red Run Campground		-76.0817	
LaR2	Landis Run	Conestoga	40.0897,	Inactive
#12	Landis Woods		-76.2906	
HACC1	UNT Conestoga	Conestoga	40.0422,	Inactive
#31	Trib HACC Campus		-76.2681	
HANDMS1	UNT Conestoga	Conestoga	40.033071,	Inactive
#58	Trib Hand MS		-76.297069	
LR3	Lititz Run	Little	40.1336,	Inactive
#14	Millport Conservancy	Conestoga	-76.2581	
BR2	Bachman Run	Little	40.1164, -	Inactive
#2	Koser Rd	Conestoga	76.3306	
LC2A	Little Conestoga	Little	40.0214,	Inactive
#15	Manor Twp Park	Conestoga	-76.365	
LC5	Little Conestoga	Little	40.0953,	Inactive
#16	Buch Ave & Miller Rd	Conestoga	-76.3364	

LC2	Little Conestoga	Little	39.9833,	Inactive
#17	Owl Bridge Rd	Conestoga	-76.3789	
1.00	1::::	1144	40.0000	
LC3	Little Conestoga	Little Conestoga	40.0369,	Inactive
#18	Maple Grove Community Center	Jonesiaga	-76.3433	
SR1	Swarr Run	Little	40.0831,	Inactive
#29	Bridge over Rt 722	Conestoga	-76.3814	
SR2	Swarr Run	Little	40.0753,	Inactive
#30	Bridge over Colebrook Rd	Conestoga	-76.37	
Con2	Conoy Cr	Conoy	40.1347,	Inactive
#4	Shrine Rd & Rt 241		-76.6167	
Con3	Conoy Cr	Conoy	40.1319,	Inactive
#3	Masonic Conference Center		-76.6219	
Con4	Conoy Cr	Conoy	40.1272,	Inactive
#8	Arosite Rd		-76.6278	
Mill8	Mill Cr	Mill	40.0261,	Inactive
#36	East of Strasburg Pike and Mill Cr		-76.2419	
MillTrib1	Mill Cr	Mill	40.0269,	Inactive
#37	Flory Park		-76.2422	
MC3	Conestoga River	Mill	40.0214,	Inactive
#38	County Park		-76.2344	
Mill10	Mill Cr	Mill	40.0905714, -	Inactive
#94	Welsh Mtn Preserve		76.0228345	
PSA2	Eshelman Run	Pequea	39.9936,	Inactive
#9	Quarry Rd		-76.1078	
PSA3	Eshelman Run	Pequea	40.0056,	Inactive
#10	Rt 30		-76.1106	
Climb2	Climbers Run	Pequea	39.918973,	Inactive

#44	966 Pennsy Rd		-76.28175	
PEQ1	Pequea Cr	Pequea	39.895188,	Inactive
#46	PPL Campground		-76.35781	
Stein2	Steinman Run	Pequea	39.896465,	Inactive
#60	Clearview Rd		-76.284922	
Good1	Goods Run	Pequea	39.94195,	Inactive
#64			-76.306546	
Peq2	Pequea Cr	Pequea	40.0119,	Inactive
#28	Paradise Mem Park		-76.1083	
Fish3	UNT Fishing Cr	Susquehanna	39.809412,	Inactive
#52	Hollow Rd		-76.233583	
Fish4	Fishing Cr	Susquehanna	39.807606,	Inactive
#53	Furniss Rd		-76.236189	
Fish13	Fishing Cr	Susquehanna	39.817438,	Inactive
#111	Valley Lea Riding Club		-76.239506	
Fish14	Fishing Cr	Susquehanna	39.816346,	Inactive
#112	Northern end of Drumore Park		-76.238443	

Table 6B: Location of analysis*

Place of Analysis	Indicators Analyzed
Field	pH – Conductivity – Total Dissolved Solids - D.O. –
	Temperature – Turbidity - Salinity
Indoor test kit use	Total Phosphates – Nitrates – Alkalinity
Field	Macroinvertebrates & Visual Habitat Assessment

^{*} The places of analysis for each indicator listed in this table are recommended locations. However, any test that is not a direct sample may be analyzed back at the lab or in the field.

Table 7A Sampling Schedule, Frequency, Times and Weather

Indicator(s)	Sampling and Analysis Dates	Time of Day Sampled	Special Weather Conditions
Chemical Tests	Once per month	Morning (before noon)	All except dangerous conditions
Macroinvertebrate Assessment	Twice a year – Spring and Autumn	Morning (before noon)	All except dangerous conditions
Physical Habitat Evaluation	Once per year	Morning (before noon)	All except dangerous conditions

Quality Assurance & Quality Control

Table 8A Quality Control Measures

Indicator(s)	Internal Quality Control Measures	Percent Quality Control Samples	External Quality Control Measures
Temperature	Field duplicate	100	Volunteers are trained by certified trainers
рН	Field duplicate Calibration	10 100	Volunteers are trained by certified trainers
DO	Field Duplicate Std check	10 1 per year	Volunteers are trained by certified trainers
Total Phosphates	Field duplicate Field blank Std check	10 2 per year 1 per year	Volunteers are trained by certified trainers
Turbidity	Field duplicate	10 100	Volunteers are trained by certified trainers
Nitrates	Field duplicate Field blank Std check	10 2 per year 1 per year	Volunteers are trained by certified trainers
Conductivity	Field duplicate Field blank Std check	10 2 per year 1 per year	Volunteers are trained by certified trainers
Alkalinity	Field duplicate	10	Volunteers are trained by certified trainers
Total Dissolved Solids	Field duplicate Calibration	10 100	Volunteers are trained by certified trainers

Macroinvertebrates	Two identifiers/counters	-	Volunteers are trained by certified trainers
Salinity	Field duplicate Calibration	10 100	Volunteers are trained by certified trainers

8B Quality Control Response Actions:

- Repeat sampling /analysis
- Procedures overviewed by a technical trainer
- Results checked with colorimeter and digital titrator.

8C Training

Training sessions will be completed on chemical analysis, visual habitat assessment, macroinvertebrate sampling and identification by ALLARM, LCCD Staff, and/or other certified training partners. Retrains or refreshers are welcomed and should be communicated if needed by any volunteers.

All new volunteers will be trained by our site trainers and/or LCCD staff. These people will have extensive knowledge and experience with all of the tests and be certified to train by ALLRAM or District staff.

All volunteers will have the opportunity to attend conferences and workshops throughout the year to brush up on old skills, learn new ones and network with DEP, Nature Abounds, other PASEC sites, ALLARM, and other volunteers monitoring groups if interest is expressed.

8D Training/Reference Manuals

- Volunteer Water Quality Volunteer Field Manual
- The Lancaster Watersheds website provides many training materials (lancasterwatersheds.org)
- Aquatic Entomology by W.P. McCafferty
- HACH Technical and Colorimeter Manuals
- DEP/Nature Abounds Supplements

Data Analysis

9A Recording Data

At this time, all data will be recorded on the data sheets located on the Lancaster Watersheds Volunteer webpage or in the brown drawer at the Farm & Home Center. As the group continues to grow and sampling becomes more diverse, these sheets will need to be modified. Be sure to complete all fields on the data sheet, especially **site name**, **date**, **and time**.

9B Data Management

Data sheets will be reviewed by the team performing the tests and then dropped into the data collection box at the lab. The data sheets will then be collected by specified data technicians and reviewed for completeness, as well as, comparing site data from previous sampling. Finally, the information will be entered into the web-based WQVC database. If information is missing from the forms, or the data seems unusual when compared to previous collections, the technician will contact a member from the team to discuss the problem(s). If the team members and the technician cannot solve the problem, they should contact the project coordinator.

Periodically graphs, charts, & spreadsheets will be created by volunteers to show measurable results and to track accuracy within the program. These manipulatives will be utilized in program displays, learning tools, and other education functions as well. The WQVC database that is publicly accessible includes interactive graphs that can be filtered by site for ease of visualization.

Project Tasks and Personnel

Table 10A

		Paid	
Major Project Tasks	Position/Title	Position	Address, Phone #, email
Lab Maintenance (includes Main lab and satellite labs)	All Volunteers	N	All Volunteers
Kit Maintenance	Noelle Cudney/Amanda Goldsmith	Y	1383 Arcadia Rd., Lancaster 717-299-5361 ext. 2557 NoelleLaFaver@lancasterconservation .org
Data Entry	Noelle LaFaver	Y	1383 Arcadia Rd., Lancaster 717-299-5361 ext. 2557 NoelleLaFaver@lancasterconservation .org
Waste Disposal	Volunteers	N	Volunteers
Chemical Trainer(s)	Lancaster Conservancy, LCCD Staff	N/Y	
Macro Trainer(s)	Amanda Goldsmith	Y	1383 Arcadia Rd., Lancaster 717-299-5361 ext. 2562 AmandaGoldsmith@lancasterconserva tion.org
Recruiter(s)	WQVC volunteers & LCCD	N	

Table 10B Technical Committee

Member Name	Area of Expertise	Address, Phone, E-mail
Amanda Goldsmith	WQVC Co-Lead &	1383 Arcadia Rd., Lancaster
	Macroinvertebrate	717-299-5361 ext. 2523
	Trainer	AmandaGoldsmith@lancasterconservation.org
Mike King	Chemical Testing	
	Trainer	
Noelle Cudney	WQVC Co-Lead & Data	1383 Arcadia Rd., Lancaster
	Technician	717-299-5361 ext. 2557
		NoelleLaFaver@lancasterconservation.org

<u>APPENDIX A</u>